IMPORTANT SAFETY INFORMATION


Interstitial lung disease/pneumonitis. Severe, life-threatening, or fatal interstitial lung disease (ILD) and/or pneumonitis can occur in patients treated with KISQALI and other CDK4/6 inhibitors...

See More

Indications. KISQALI® (ribociclib) is a kinase inhibitor indicated in combination with: an aromatase inhibitor for the treatment of pre/perimenopausal or postmenopausal women with hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative advanced or metastatic breast cancer, as initial endocrine-based therapy; or fulvestrant for the treatment of postmenopausal women with HR-positive, HER2-negative advanced or metastatic breast cancer, as initial endocrine-based therapy or following disease progression on endocrine therapy

PK/PD Data

KISQALI—a Different CDK4/6 Inhibitor

CDK4 IS A KEY DRIVER OF HR+/HER2- MBC1,2

 

CDK4 plays a critical role in breast cancer tumorigenesis and cell proliferation.1,2

  • Levels of CDK4 are upregulated ~40x more than CDK6 in some ER+ breast cancer tumors3,4
  • Inhibition of CDK4 has been shown to block the ability of breast cancer cells to form tumors1

 

AVAILABLE DRUG IS ABLE TO PENETRATE CELLS TO BIND AND INHIBIT CDK45,6

  • Available drug is the concentration of drug that is able to reach the bloodstream for circulation 

 

SELECT DIFFERENCES IN INHIBITION OF CDK4 RELATIVE TO CDK64,6,7

Data derived from 2 separate studies that assessed all 3 CDK4/6 inhibitors

Chart depicting drug available to bind and CDK4 inhibition relative to CDK6 Chart depicting drug available to bind and CDK4 inhibition relative to CDK6
  • KISQALI inhibits CDK4 up to 8x more than CDK64,6,7
    – Inhibition of CDK4 relative to CDK6 in the above chart was based on a preclinical, in vitro cellular assay. The activities of KISQALI, palbociclib, and abemaciclib were tested in proliferation assays using cancer cell lines where either CDK4 or CDK6 plays a dominant role in cell-cycle progression6
    – Relative inhibition of CDK4 to CDK6 has been reported from 2 separate studies where all 3 CDK4/6 inhibitors were measured under the same conditions. The resulting relative inhibition was reported from cellular and biochemical assays in the following ranges: KISQALI 4x-8x, abemaciclib 5x-7x, and palbociclib 1x4,6,7
  • KISQALI had the highest levels of drug available to bind among currently approved CDK4/6 inhibitors in a pharmacokinetic analysis7
    – Drug available to bind was based on steady-state average unbound drug concentration in patients at the recommended starting doses: ribociclib (600 mg QD), palbociclib (125 mg QD), and abemaciclib (200 mg Q12H). Values were normalized to palbociclib. Unbound drug exposure may not correlate with clinical outcome



  • The information herein is not presented to compare the efficacy or safety profile of the discussed compounds. No implication of superiority or inferiority is intended or should be inferred, as the data herein do not necessarily correlate with clinical outcomes
  • This information is being shared with health care professionals to help ensure an accurate understanding of the pharmacokinetic/pharmacodynamic profiles of these products: ribociclib, palbociclib, and abemaciclib; different analyses may yield different results
  • There have been no head-to-head clinical studies among any of these products: ribociclib, palbociclib, and abemaciclib
  • This information is derived from publications for the respective products, which are based on presently available data
  • This information neither conveys, nor attempts to convey, the full benefit-risk profile of each product described. Treatment decisions are made based on a number of different factors related to the disease, patient, and potential therapy under consideration



To view the video library, continue to the next page >

CDK=cyclin-dependent kinase; ER+=estrogen receptor-positive; HER2-=human epidermal growth factor receptor 2-negative; HR+=hormone receptor-positive; mBC=metastatic breast cancer; Q12H=once every 12 hours; QD=once per day.

References: 1. Yu Q, Sicinska E, Geng Y, et al. Requirement for CDK4 kinase function in breast cancer. Cancer Cell. 2006;9(1):23-32. 2. An H-X, Beckmann MW, Reifenberger G, Bender HG, Niederacher D. Gene amplification and overexpression of CDK4 in sporadic breast carcinomas is associated with high tumor cell proliferation. Am J Pathol. 1999;154(1):113-118. 3. Koboldt DC, Fulton RS, McLellan MD, et al. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61-70. 4. Data on file. Novartis Pharmaceuticals Corp; 2019. 5. Musteata FM. Monitoring free drug concentrations: challenges. Bioanalysis. 2011;3(15):1753-1768. 6. Kim S, Tiedt R, Loo A, et al. The potent and selective cyclin-dependent kinases 4 and 6 inhibitor ribociclib (LEE011) is a versatile combination partner in preclinical cancer models. Oncotarget. 2018;9(81):35226-35240. 7. Chen P, Lee NV, Hu W, et al. Spectrum and degree of CDK drug interactions predicts clinical performance. Mol Cancer Ther. 2016;15(10):2273-2281;(suppl tables).

Indications
KISQALI is a kinase inhibitor indicated in combination with:
  • an aromatase inhibitor for the treatment of pre/perimenopausal or postmenopausal women with hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative advanced or metastatic breast cancer, as initial endocrine-based therapy; or
  • fulvestrant for the treatment of postmenopausal women with HR-positive, HER2-negative advanced or metastatic breast cancer, as initial endocrine-based therapy or following disease progression on endocrine therapy 

The KISQALI® (ribociclib) FEMARA® (letrozole) Co-Pack is indicated as initial endocrine-based therapy for the treatment of pre/perimenopausal or postmenopausal women with hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative advanced or metastatic breast cancer.

IMPORTANT SAFETY INFORMATION
Interstitial lung disease/pneumonitis. Severe, life-threatening, or fatal interstitial lung disease (ILD) and/or pneumonitis can occur in patients treated with KISQALI and other CDK4/6 inhibitors.

Across clinical trials in patients with advanced or metastatic breast cancer treated with KISQALI in combination with an aromatase inhibitor or fulvestrant (“KISQALI treatment groups”), 1.1% of KISQALI-treated patients had ILD/pneumonitis of any grade, 0.3% had grade 3 or 4, and 0.1% had a fatal outcome. Additional cases of ILD/pneumonitis have been observed in the postmarketing setting, with fatalities reported.

Monitor patients for pulmonary symptoms indicative of ILD/pneumonitis, which may include hypoxia, cough, and dyspnea. In patients who have new or worsening respiratory symptoms suspected to be due to ILD or pneumonitis, interrupt treatment with KISQALI immediately and evaluate the patient. Permanently discontinue treatment with KISQALI in patients with recurrent symptomatic or severe ILD/pneumonitis.

QT interval prolongation. KISQALI® (ribociclib) and the KISQALI® (ribociclib) FEMARA® (letrozole) Co-Pack have been shown to prolong the QT interval in a concentration-dependent manner. Based on the observed QT prolongation during treatment, KISQALI may require dose interruption, reduction, or discontinuation. Across clinical trials in patients with advanced or metastatic breast cancer treated with KISQALI in combination with an aromatase inhibitor or fulvestrant (“KISQALI treatment groups”), 14 of 1054 patients (1%) had >500 ms postbaseline QTcF value, and 59 of 1054 (6%) had a >60 ms increase from baseline in QTcF intervals. These ECG changes were reversible with dose interruption and most occurred within the first 4 weeks of treatment. No cases of torsades de pointes were reported. In MONALEESA-2, on the KISQALI + letrozole treatment arm, there was 1 (0.3%) sudden death in a patient with grade 3 hypokalemia and grade 2 QT prolongation. No cases of sudden death were reported in MONALEESA-7 or MONALEESA-3.

Assess ECG prior to initiation of treatment. Initiate treatment with KISQALI or the KISQALI FEMARA Co-Pack only in patients with QTcF values <450 ms. Repeat ECG at approximately Day 14 of the first cycle, at the beginning of the second cycle, and as clinically indicated. Monitor serum electrolytes (including potassium, calcium, phosphorus, and magnesium) prior to the initiation of treatment, at the beginning of each of the first 6 cycles, and as clinically indicated. Correct any abnormality before starting therapy with KISQALI or the KISQALI FEMARA Co-Pack therapy.

Avoid the use of KISQALI or the KISQALI FEMARA Co-Pack in patients who already have or who are at significant risk of developing QT prolongation, including patients with:

  • long QT syndrome
  • uncontrolled or significant cardiac disease including recent myocardial infarction, congestive heart failure, unstable angina, and bradyarrhythmias
  • electrolyte abnormalities

Avoid using KISQALI or the KISQALI/FEMARA Co-Pack with drugs known to prolong the QT interval and/or strong CYP3A inhibitors, as this may lead to prolongation of the QTcF interval.

Increased QT prolongation with concomitant use of tamoxifen. KISQALI is not indicated for concomitant use with tamoxifen. In MONALEESA-7, the observed mean QTcF increase from baseline was ≥10 ms higher in the tamoxifen + placebo subgroup compared with the NSAI + placebo subgroup. In the placebo arm, an increase of >60 ms from baseline occurred in 6 of 90 patients (7%) receiving tamoxifen, and in no patients receiving an NSAI. An increase of >60 ms from baseline in the QTcF interval was observed in 14 of 87 (16%) patients in the KISQALI and tamoxifen combination and in 18 of 245 (7%) patients receiving KISQALI plus an NSAI.

Hepatobiliary toxicity. Across clinical trials in patients with advanced or metastatic breast cancer, increases in transaminases were observed. Across all trials, grade 3 or 4 increases in alanine aminotransferase (ALT) (10% vs 2%) and aspartate aminotransferase (AST) (7% vs 2%) were reported in the KISQALI and placebo arms, respectively.

Among the patients who had grade ≥3 ALT/AST elevation, the median time to onset was 85 days and median time to resolution to grade ≤2 was 22 days for the KISQALI treatment groups.

In MONALEESA-2 and MONALEESA-3, concurrent elevations in ALT or AST greater than 3 times the ULN and total bilirubin greater than 2 times the upper limit of normal (ULN), with normal alkaline phosphatase, in the absence of cholestasis occurred in 6 (1%) patients and all patients recovered after discontinuation of KISQALI. No cases occurred in MONALEESA-7.

Perform liver function tests (LFTs) before initiating therapy with KISQALI or the KISQALI FEMARA Co-Pack. Monitor LFTs every 2 weeks for the first 2 cycles, at the beginning of each of the subsequent 4 cycles, and as clinically indicated. Based on the severity of the transaminase elevations, KISQALI may require dose interruption, reduction, or discontinuation. Recommendations for patients who have elevated AST/ALT grade ≥3 at baseline have not been established. 

Neutropenia. Across clinical trials in patients with advanced or metastatic breast cancer, neutropenia was the most frequently reported adverse reaction (AR) (74%), and a grade 3/4 decrease in neutrophil count (based on laboratory findings) was reported in 58% of patients in the KISQALI treatment groups. Among the patients who had grade 2, 3, or 4 neutropenia, the median time to grade ≥2 was 16 days. The median time to resolution of grade ≥3 (to normalization or grade <3) was 12 days in the KISQALI treatment groups. Febrile neutropenia was reported in 1% of patients in the KISQALI treatment groups. Treatment discontinuation due to neutropenia was 0.8%.

Perform complete blood count (CBC) before initiating therapy with KISQALI or the KISQALI FEMARA Co-Pack. Monitor CBC every 2 weeks for the first 2 cycles, at the beginning of each of the subsequent 4 cycles, and as clinically indicated. Based on the severity of the neutropenia, KISQALI may require dose interruption, reduction, or discontinuation.

Embryofetal toxicity. Based on findings from animal studies and the mechanism of action, KISQALI can cause fetal harm when administered to a pregnant woman. In animal reproduction studies, administration of KISQALI to pregnant rats and rabbits during organogenesis caused embryofetal toxicities at maternal exposures that were 0.6 and 1.5 times the human clinical exposure, respectively, based on area under the curve. Letrozole caused embryofetal toxicities in rats and rabbits at maternal exposures that were below the maximum recommended human dose (MRHD) on a milligrams per square meter basis. Advise pregnant women of the potential risk to a fetus. Advise women of reproductive potential to use effective contraception during therapy with KISQALI or the KISQALI FEMARA Co-Pack and for at least 3 weeks after the last dose.

Adverse reactions. Across clinical trials of patients with advanced or metastatic breast cancer, the most common ARs reported in the KISQALI treatment groups (pooled incidence ≥20%) were neutropenia (74% vs 5%), nausea (45% vs 27%), infections (41% vs 30%), fatigue (33% vs 30%), diarrhea (30% vs 22%), leukopenia (30% vs 3%), vomiting (27% vs 16%), alopecia (24% vs 12%), headache (24% vs 22%), constipation (24% vs 16%), rash (21% vs 9%), and cough (21% vs 16%). The most common grade 3/4 ARs (reported at a pooled frequency >5%) were neutropenia (59% vs 1%), leukopenia (16% vs 3%), abnormal LFTs (9% vs 2%), and lymphopenia (5% vs 1%).

Laboratory abnormalities. Across clinical trials of patients with advanced or metastatic breast cancer, the most common laboratory abnormalities reported in the KISQALI-containing arm vs placebo arm (all grades, pooled incidence ≥20% and ≥5% higher than placebo arm) were leukocyte count decrease (94% vs 30%), neutrophil count decrease (93% vs 25%), hemoglobin decrease (66% vs 38%), lymphocyte count decrease (61% vs 26%), AST increase (47% vs 38%), ALT increase (44% vs 36%), creatinine increase (38% vs 13%), and platelet count decrease (31% vs 9%). The most common grade 3/4 laboratory abnormalities (incidence >5%) were neutrophil count decrease (59% vs 2%), leukocyte count decrease (32% vs 1%), lymphocyte count decrease (15% vs 4%), ALT increase (10% vs 2%), and AST increase (7% vs 2%).

Please see full Prescribing Information.